Cookie Consent by Free Privacy Policy Generator
Search
Close this search box.

Researchers Devise a Way to Protect Qubits from Errors Using Photons in a Silicon Chip

Photonic Chip
Photonic Chip
Protecting qubits will help bring about quantum computers that are useful for real world problem-solving. The photonic chip generates and entangles ensembles of photons. It can implement a range of quantum error correcting codes.

Quantum computers are gaining pace. They promise to provide exponentially more computing power for certain very tricky problems. They do this by exploiting the peculiar behaviour of quantum particles, such as photons of light.

However, quantum states of particles are very fragile. The quantum bits, or qubits, that underpin quantum computing pick up errors very easily and are damaged by the environment of the everyday world. Fortunately, we know in principle how to correct for these errors.

Quantum error correcting codes are a method to protect, or to nurture, qubits, by embedding them in a more robust entangled state of many particles. Now a team led by researchers at Bristol’s Quantum Engineering and Technology Laboratories (QETLabs) has demonstrated this using a quantum photonic chip.

The team showed how large states of entangled photons can contain individual logical qubits and protect them from the harmful effects of the classical world. The Bristol-led team included researchers from DTU in Copenhagen who fabricated the chip.

Caterina Vigliar, first author on the work, said: “The chip is really versatile. It can be programmed to deliver different kinds of entangled states called graphs. Each graph protects logical quantum bits of information from different environmental effects.”

Anthony Laing, co-Director of QETLabs, and an author on the work said: “Finding ways to efficiently deliver large numbers of error protected qubits is key to one day delivering quantum computers.”

The work is published in Nature Physics.

For more market insights, check out our latest quantum computing news here.

The Future of Materials Discovery: Reducing R&D Costs significantly with GenMat’s AI and Machine Learning Tools

When: July 13, 2023 at 11:30am

What: GenMat Webinar

Picture of Jake Vikoren

Jake Vikoren

Company Speaker

Picture of Deep Prasad

Deep Prasad

Company Speaker

Picture of Araceli Venegas

Araceli Venegas

Company Speaker

Matt Swayne

With a several-decades long background in journalism and communications, Matt Swayne has worked as a science communicator for an R1 university for more than 12 years, specializing in translating high tech and deep tech for the general audience. He has served as a writer, editor and analyst at The Quantum Insider since its inception. In addition to his service as a science communicator, Matt also develops courses to improve the media and communications skills of scientists and has taught courses. [email protected]

Share this article:

Keep track of everything going on in the Quantum Technology Market.

In one place.

Join Our Newsletter